If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2=165888
We move all terms to the left:
2n^2-(165888)=0
a = 2; b = 0; c = -165888;
Δ = b2-4ac
Δ = 02-4·2·(-165888)
Δ = 1327104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1327104}=1152$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1152}{2*2}=\frac{-1152}{4} =-288 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1152}{2*2}=\frac{1152}{4} =288 $
| -x^2+31x-150=0 | | 70=6c+4c | | 4(2x-3)=3(3x+3) | | (5x+13)112=180 | | 7/2k+3/4=-7/8 | | 2+4x)-(x+9)=26 | | 7/n=4 | | 25^x+7.5^x+8=0 | | 0.5x^2+7.5x+8=0 | | 3x4(=6) | | x^2-4x-3=10 | | 1/2(4x+10)=12x | | 3x-2x=7-6x | | 2(3p-2)-p+4)=3p | | 4x+24=2x+26 | | x.0.6=6 | | 78=(5x-2 | | 3e-16=-4e+5 | | 16x+1.579x-65=41(40x+25) | | 2x-43=-53 | | -17=-2x+5 | | -1/4x=-3/8 | | -3=18-3x | | v+2.51=5.35 | | 5+15=6x | | 70=11r | | 15-3x=4x+6= | | 175/x=7x | | Y=9/20x+8/3 | | 6x(3)=72 | | x-41=3x-43 | | 48+2v=8v |